Constructing Structured Information Networks from Massive Text Corpora

Xiang Ren Meng Jiang Jingbo Shang Jiawei Han

Department of Computer Science

University of Illinois at Urbana-Champaign
Unstructured Text Data (account for ~80% of all data in organizations)
This **hotel** is my favorite **Hilton property** in **NYC**! It is located right on 42nd street near **Times Square**, it is close to all subways, **Broadways shows**, and next to great restaurants like **Junior’s Cheesecake**, **Virgil’s BBQ** and many others.

-- *TripAdvisor*

Structured Facts

1. “Typed” entities
2. “Typed” relationships
Why Text to Structures?

Structured Search & Exploration

- City contains "ist" ✗
- Category equals "Friends" ✗
- Birthday on 09/04/2000 ✗ Age = 30 ✗
- Lastname equals "plugins" ✗
- Is active

Pattern / Association Rule Mining

Graph Mining & Network Analysis

Structured Feature Generation

Input Space

Feature Space
A Product Use Case: Finding “Interesting Hotel Collections”

Technology Transfer to TripAdvisor

Grouping hotels based on structured facts extracted from the review text

Features for “Catch a Show” collection
1. broadway shows
2. beacon theater
3. broadway dance center
4. broadway plays
5. david letterman show
6. radio city music hall
7. theatre shows

Features for “Near The High Line” collection
1. high line park
2. chelsea market
3. highline walkway
4. elevated park
5. meatpacking district
6. west side
7. old railway

A Life Science Use Case: Identifying “Distinctively Related Entities”

Collaborate with UCLA Heart BD2K Center & Mayo Clinic

What proteins are distinctively associated with Cardiomyopathy?

This hotel is my favorite Hilton property in NYC! It is located right on 42nd street near Times Square, it is close to all subways, Broadways shows, and next to many great ...

... We had a room facing Times Square and a room facing the Empire State Building, The location is close to everything and we love ...

Structured Facts
- Broadways shows
- NYC
- Times square
- hotel
- Hilton property

Extraction Rules
- Machine-Learning Models

Labeled data

Text Corpus

Prior Art: Extracting Structures with Repeated Human Effort

...
This Tutorial: Effort-Light StructMine

- Enables **quick** development of applications over various corpora
- Extracts **complex** structures without introducing human error
Effort–Light StructMine: Where Are We?

A Review of Previous Efforts

Human labeling effort

Hand-crafted Systems
UCB Hearst Pattern, 1992
NYU Proteus, 1997

Supervised learning systems
Stanford CoreNLP, 2005 - present
UT Austin Dependency Kernel, 2005
IBM Watson Language APIs

Weakly-supervised learning systems
CMU NELL, 2009 - present
UW KnowItAll, Open IE, 2005 - present
Max-Planck YAGO, 2008 - present

Distantly-supervised Learning Systems
Stanford DeepDive, MIML-RE 2012 - present
UW FIGER, MultiR, 2012

Effort-Light StructMine
(WWW’15, KDD’15, KDD’16, EMNLP’16, WWW’17, ...)

Feature engineering effort
“Distant” Supervision: What Is It?

“Matchable” structures: entity names, entity types, typed relationships ...

Freely available!
- Common knowledge
- Life sciences
- Art ...

Rapidly growing!

Number of Wikipedia articles

Learning with Distant Supervision: Challenges

1. Sparsity of “Matchable”
 - Incomplete knowledge bases
 - Low-confidence matching

2. Accuracy of “Expansion”
 - For “matchable”: Are all the labels assigned accurately?
 - For “un-matchable”: How to perform inference accurately?

(Ren et al., KDD’15)
Effort-Light StructMine: Contributions

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparsity of “Matchable”</td>
<td>Effective expansion from “matchable” to “un-matchable”</td>
</tr>
<tr>
<td>Accuracy of “Expansion”</td>
<td>Pick the “best” labels based on the context (for both “matchable” and “un-matchable”)</td>
</tr>
</tbody>
</table>

Harness the “data redundancy” using graph-based joint optimization

It is my favorite city in the United States

The United States needs a new strategy to meet this challenge
Effort-Light StructMine: Methodology

Data-driven text segmentation (SIGMOD’15, WWW’16)

Entity names & context units

Learning Corpus-specific Model (KDD’15, KDD’16, EMNLP’16, WWW’17)

Partially-labeled corpus

Knowledge bases

Text corpus

Structures from the remaining unlabeled data
Effort-Light StructMine: Methodology

- Text corpus
- Data-driven text segmentation (SIGMOD’15, WWW’16)
- Entity names & context units
- Structures from the remaining unlabeled data
- Learning Corpus-specific Model (KDD’15, KDD’16, EMNLP’16, WWW’17)
- Partially-labeled corpus
- Knowledge bases

Closed-world Assumption vs Open-world Assumption
Effort-Light StructMine: Methodology

Text corpus

Data-driven text segmentation (SIGMOD’15, WWW’16)

Entity names & context units

Learning Corpus-specific Model (KDD’15, KDD’16, EMNLP’16, WWW’17)

Partially-labeled corpus

Structures from the remaining unlabeled data

Typing of Entities and Relations VS Meta Pattern-Based Attribute Mining

Knowledge bases
Tutorial Outline

• Introduction
• Part I: Quality Phrase Mining
• Part II: Joint Typing of Entities and Relations
 • Tea break in the middle (10:30am)
• Part III: Attribute Discovery
• Summary & Future Directions